Flack, H. D. (1983). Acta Crust. A39. 876-881.
Froidbize, A. (1997). Mémoire de Licence, Facultés Universitaires Notre-Dame de la Paix. Namur, Belgium.
Gabc, E. J., Le Page, Y.. Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cnst. 22, 384-387.

Krief, A., Provins, L. \& Froidbize. A. (1998). Tetrahedron Lett. 39. 1437-1440.
Sheldrick, G. M. (1990). SHELXS97. Program for the Solution of Cristal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Cnustal Structures. University of Göttingen, Germany.
Spek. A. L. (1990). Acta Cryst. A46. C-34.

Acta Cryst. (1998). C54, 837-840

Lignin Model Compounds: 4,4'-O-Dimethyldehydrodiacetovanillone and 4,4'-O-Diethyldehydrodiacetovanillone

Márcia A. Ferreira, \dagger Márcia D. D. Costa, Isolda M. C. Mendes, Mariza G. Drumond, Dorila Pló-Veloso and Nelson G. Fernandes
Department of Chemistry, Federal University of Minas Gerais, CP 702, 31270.901, Belo Horizonte, Brazil. E-mail: nelsongf@apolo.qui.ufmg.br

(Received 21 April 1997; accepted 27 November 1997)

Abstract

The title compounds, $5,5^{\prime}$-diacetyl-2, $2^{\prime}, 3,3^{\prime}$-tetrameth-oxy-1, 1^{\prime}-biphenyl, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$, and $5,5^{\prime}$-diacetyl-2, 2^{\prime} -diethoxy-3, 3^{\prime}-dimethoxy-1, 1^{\prime}-biphenyl (IUPAC nomenclature), $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$, correspond to the 5,5'-biphenyl-type lignin model compound. They were synthesized from dehydrodiacetovanillone by alkylation with $\mathrm{CH}_{3} \mathrm{I}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$. In the former compound, all non- H atoms in the asymmetric unit are planar except for one C atom. In the latter compound, there are two molecules of different conformations, one of which is affected by disorder.

Comment

Lignin is a macromolecule which causes paper to yellow with age. It is a by-product of the cellulose industry and represents an important source for the production of aromatic substances. The main route for elucidation of the complex lignin structure has been the synthesis of small molecules followed by comparative NMR and IR studies of the model compound prepared and the lignin (Hergert, 1971; Drumond et al., 1989, 1992). Structure determination by diffraction techniques can be helpful in interpreting NMR and IR spectra. The title compounds,

[^0](I) and (II), described herein were synthesized with the aim of studying dimeric model compounds related to 5,5'-arylpropanoid substructures (biphenyl derivatives) frequently found in lignins (Sarkanen \& Ludwing, 1971; Adler, 1977; Chen, 1991).

(I)

(II)

The structure of $4,4^{\prime}$-O-dimethyldehydrodiacetovanillone, (I), is shown in Fig. 1. Half of the molecule constitutes an asymmetric unit. The average deviation of the aromatic ring C atoms from the best leastsquares plane through the rings is 0.010 (2) \AA. The dihedral angle between the two aromatic ring planes is $60.00(7)^{\circ}$. All of the non-H atoms in the asymmetric unit are almost planar, except for C10, which deviates by 1.291 (3) \AA from the best least-squares plane.

Fig. 1. The molecular structure of $4,4^{\prime}-O$-dimethyldehydrodiacetovanillone with ellipsoids drawn at the 50% probability level. [Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.]

The structure of compound (II), 4, 4^{\prime} - O-diethyldehydrodiacetovanillone, is shown in Fig. 2. There are two molecules of different conformations in the asymmetric unit. The C (ring) - O (methoxy and/or ethoxy) bonds have a mean length of 1.371 (6) \AA (external standard deviation estimate, i.e. calculated from the scatter of the data). The average bond distances and angles in the aromatic rings are 1.389 (9) \AA and $120(1)^{\circ}$, respectively. As expected, the four aromatic rings are planar, the maximum deviation from the best least-squares plane being $0.022(2) \AA$. The dihedral angles between the aromatic rings are $114.9(2)$ and $60.2(1)^{\circ}$ in molecules A and B, respectively. The structure of the B isomer is analogous to that of compound (I).

Fig. 2. Molecular structures of the A and B isomers of $4,4^{\prime}-O$-diethyldehydrodiacetovanillone with ellipsoids drawn at the 50% probability level.

Experimental

The syntheses of (I) and (II) were performed in two steps. Firstly, a dehydrogenative coupling of acetovanillone occurred in the presence of $\mathrm{Fe}_{2} \mathrm{SO}_{4}$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ to form dehydrodiacetovanillone (Drumond et al., 1992). Secondly, a Williamson synthesis was undertaken by reacting dehydrodiacetovanillone with $\mathrm{CH}_{3} \mathrm{~J} / \mathrm{K}_{2} \mathrm{CO}_{3}$ [to give (I)] and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I} / \mathrm{K}_{2} \mathrm{CO}_{3}$ [to give (II)] in dimethylformamide. Single crystals were obtained by slow evaporation from ethanol solution.

Compound (I)
Crystal data
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$
$M_{r}=358.38$
Monoclinic
$C 2 / c$
$a=20.090(2) \AA$
$b=7.0879$ (6) \AA
$c=15.414$ (1) \AA
$\beta=124.513$ (4) ${ }^{\circ}$
$V=1808.6(4) \AA^{3}$
$Z=4$
$D_{x}=1.316 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer $\omega / 2 \theta$ scans
Absorption correction: analytical (Lundgren,
1982)
$T_{\text {min }}=0.960, T_{\text {max }}=0.986$
3337 measured reflections
2652 independent reflections
2652 reflections with

$$
I>0
$$

Refinement

Refinement on F^{2}
$R\left(F^{2}\right)\left(F^{2}>0\right)=0.060$
$w R\left(F^{2}\right)\left(F^{2}>0\right)=0.089$
$S\left(F^{2}\right)\left(F^{2}>0\right)=1.851$
2652 reflections
153 parameters
All H atoms refined
$n^{\prime}=1 / \sigma^{2}\left(F_{0}^{2}\right)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=30.00^{\circ}$
$h=-1 \rightarrow 28$
$k=-1 \rightarrow 10$
$l=-21 \rightarrow 18$
3 standard reflections every 297 reflections intensity decay: <1\%

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (I)

$\mathrm{OI}-\mathrm{C} 7$	$1.212(2)$	$\mathrm{Cl}-\mathrm{C} 7$	$1.485(2)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.364(2)$	$\mathrm{C} 2-\mathrm{C} 3$	1.369
$\mathrm{O} 2-\mathrm{C} 9$	$1.434(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.415(2)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.364(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.383(2)$

O3--C10	1.423 (2)	C5-C5	1.490	O7-C35	1.219 (3)	C23-C35	1.495 (4)
$\mathrm{C} 1-\mathrm{C} 2$	1.390 (2)	C5-C6	1.384	O8-C37	1.417 (3)	C27-C29	1.499 (3)
C1-C6	1.389 (2)	C7-C8	1.482	O9-C38	1.435 (3)	C33-C40	1.502 (4)
$\mathrm{Ol}-\mathrm{C7}-\mathrm{Cl}$	120.4 (2)	O3-C4-C5	120.6	O10-C40	1.215 (3)	C35-C36	1.501 (4)
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	120.5 (2)	C4-O3-C10	113.9	$011-\mathrm{C} 42$	1.427 (3)	C38-C39	1.427 (4)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	125.7 (1)	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	119.2	O12-C30	1.378 (3)	C40-C41	1.495 (4)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	114.4 (1)	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7$	119.5	O12-C43	1.449 (5)	C43-C44	1.412 (6)
$\mathrm{C} 3-\mathrm{O} 2-\mathrm{C} 9$	117.3 (1)	C4-C5-C5	121.5	$\mathrm{O} 12-\mathrm{C} 43 \mathrm{~A}$	1.450 (5)	C43A-C44A	1.412 (6)
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	119.7 (1)			$\mathrm{Cl}-\mathrm{Cl} 3$	1.492 (4)		
Symmetry code: (i) $-x, y, \frac{1}{2}-z$				C3-O2-C15	118.0 (2)	C19-C18-C11	119.3 (3)
				C4-O3-C16	115.5 (2)	C22-C21-()6	107.0 (3)
				C9-O5-C20)	118.3 (2)	C28-C23-C35	122.2 (2)
				C8-O6-C21	116.7 (2)	O8-C25-C24	125.0 (2)
Compound (II)				C25-O8-C37	117.9 (2)	O9-C26-C27	118.5 (2)
Crystal data				C26-O9-C38	115.0 (2)	C26-C27-C29	121.4 (2)
				C31-O11-C42	117.6 (2)	C30-C29-C27	120.4 (2)
$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$		Mo $K \alpha$ rad		C30-O12-C43	124.3 (7)	$\mathrm{C} 29-\mathrm{C} 30-\mathrm{O} 12$	120.3 (2)
$M_{r}=386.43$		$\lambda=0.71073$		$\mathrm{C} 6-\mathrm{Cl}-\mathrm{Cl}_{3}$	118.3 (2)	$\mathrm{O} 12-\mathrm{C} 30-\mathrm{C} 31$	118.7 (2)
Triclinic		Cell parame		O2-C3-C2	124.7 (2)	$\mathrm{O} 11-\mathrm{C} 31-\mathrm{C} 32$	125.) (3)
		Cell paraion		O3-C4-C5	119.5 (2)	C $34-\mathrm{C} 33-\mathrm{C} 40$	123.1 (3)
$P \overline{1}$		reflection		C6-C5-C7	119.2 (2)	O7-C35-C23	120.8 (3)
$a=11.4731$ (4) \AA		$\theta=14.96$		C8-C7-C5	122.0 (2)	$\mathrm{C} 23-\mathrm{C} 35-\mathrm{C} 36$	119.1 (3)
$b=12.2009(4) \AA$		$\mu=0.090$ m		O6-C8-C7	118.7 (2)	C39-C38-O9	110.9 (3)
$c=17.6234(7) \AA$		$T=298$ (2)		O5-C9-C10	124.2 (2)	O10-C40-C41	120.3 (3)
$\alpha=72.477$ (3) ${ }^{\circ}$		Transparent		$\mathrm{C} 12-\mathrm{Cl1}-\mathrm{Cl} 8$	122.9 (2)	$\mathrm{C} 41-\mathrm{C} 40-\mathrm{C} 33$	119.5 (3)
$\beta=75.764(3)^{\circ}$		0.40×0.30	mm	$\mathrm{Cl}-\mathrm{Cl3-C14}$	120.5 (3)	$\mathrm{C} 44 \mathrm{~A}-\mathrm{C} 43 \mathrm{~A}-\mathrm{OI} 2$	103.3 (8) 117.4 (
$\gamma=62.294(2)^{\circ}$		Colourless		O4-C18-C19	120.7 (3)		

For (I), refinements and all subsequent calculations were performed on a VAX computer using the DUPALS package of crystallographic programs (Lundgren, 1982). The H atoms were found from $\Delta \rho$ maps. The positional parameters were refined for all atoms, including H atoms; anisotropic displacements were refined for non- H atoms. For the H atoms, two different isotropic displacements were refined, one for ring H atoms and one for methyl H atoms. The H atoms in (II) were placed in idealized positions. Positional and anisotropic displacement parameters were refined for all non-H atoms; parameters for H atoms were fixed. In the course of the refinement, it soon became evident that the C atoms of the ethoxy group O12-C43-C44 were disordered. Alternative sites for C43 and C44 were therefore found in the Fourier maps, and it was then possible to improve the model and geometrical parameters such as bond distances, angles and R value. The sum of the occupancy factors for the C43-C44 and C43A-C44A groups were restrained to unity; for C43-C44 the refined value was 0.457 (6). The anisotropic displacements of C43 and C43A were restrained to be equal. A similar restriction was applied to C44 and C44A.

For both compounds, data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: XS in SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structures: $D U$ PALS for (I); SHELXL93 (Sheldrick, 1993) for (II). Molecular graphics: $X P$ in SHELXTL/PC for (I); ORTEPII (Johnson, 1976) for (II). Software used to prepare material for publication: XPUBL in SHELXTL/PC for (I); MS-DOS6.22 Editor for (II).

Financial support from the Minas Gerais Foundation for Research Development (FAPEMIG) is gratefully acknowledged (Grant CEX 1123/90).

[^1]
References

Adler, E. (1977). Wood Sci. Technol. 11, 169-218.
Chen, C. L. (1991). Wood Structure and Composition, edited by M. Lewin \& I. S. Goldstein, ch. 5, pp. 183-261. New York: Marcel Dekker Inc.
Drumond, M. G., Aoyama, M., Chen, C. L. \& Robert, D. (1989). J. Wood. Chem. Technol. 9, 421-441.
Drumond, M. G., Piló-Veloso, D., Cota. S. D. S., Morais, S. A. L., Nascimento, E. A. \& Chen, C. L. (1992). Holfforschung. 46. 127134.

Hergert, H. L. (1971). Lignins: Occurrence, Formation, Structure and Reactions, edited by K. V. Sarkanen \& C. H. Ludwing, ch. 7. pp. 267-297. New York: Wiley Interscience.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lundgren, J.-O. (1982). DUPALS. Crystallographic Computer Programs. Report UUIC-B13-04-05. Institute of Chemistry, University of Uppsala, Sweden.
Sarkanen, K. V. \& Ludwing, C. H. (1971). Editors. Lignins: Occurrence, Formation, Structure and Reactions, ch. 1, pp. 1-18. New York: Wiley Interscience.
Sheldrick, G. M. (1990). SHELXTL/PC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.
Siemens (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 840-842

Hydrogen Bonding in the 1:1 Adduct of $\mathbf{1 , 1 0}$-Phenanthroline and $\mathbf{1 , 1} \mathbf{1}^{\prime}$-Binaphthyl-2,2'-diol

Emila García-Martínez, ${ }^{a}$ Ezequiel M. VázquezLópez ${ }^{a}$ and Dennis G. Tuck ${ }^{b}$
"Departamento de Química Inorgánica, Facultade de Ciencias-Química, Universidade de Vigo, 36200 Vigo, Galicia, Spain, and ${ }^{b}$ Departament of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4. E-mail: ezequiel@uvigo.es
(Received 7 October 1997: accepted 22 December 1997)

Abstract

The title compound, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{2}$, was obtained as a $1: 1$ adduct from non-aqueous solutions of the two components. The lattice contains centrosymmetric dimers in which $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding is important. Rotation about the $\mathrm{C}-\mathrm{C}^{\prime}$ bond of the binaphthyl moiety produces a torsion angle of $-85.5(2)^{\circ}$.

\section*{Comment}

The title compound, (I), was identified initially during work on the direct electrochemical synthesis of metal

derivatives of $1,1^{\prime}$-binaphthyl-2, 2^{\prime}-diol (binaphthol) and related enolic compounds (García-Martínez \& Tuck, 1997). It was subsequently shown that the same material could be produced by the evaporation of equimolar solutions in various non-aqueous solvents.

(I)

The structure of the adduct is shown in Fig. 1. Selected geometric parameters are given in Table 1 and hydrogen-bonding details are given in Table 2. Crystals were obtained from three different solvents $\left(\mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and, in each case, the cell parameters were measured, showing that the three sets of crystals were identical within experimental error.

Fig. 1. ZORTEP (Zsolnai. 1994) diagram of $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{2}$ showing the numbering system. Atoms are represented as displacement ellipsoids drawn at the 30% probability level.

The structures of binaphthol and its derivatives have been of interest because of the use of such molecules in the optical resolution of asymmetric species (Cram \& Cram, 1979). The structures of both the (+)-(R)and racemic forms have been reported by Mori et al. (1993). Immediate points of comparison with the title compound are the $(\mathrm{O}) \mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}(\mathrm{O})$ torsion angles, which are -76.731 and -88.266°, respectively, in the $(+)-(R)$ - and racemic molecules [data obtained from the Cambridge Structural Database (Allen \& Kennard, 1993)], and -85.5 (2) ${ }^{\circ}$ (C14-C19-C25-C24) for the binaphthol moiety in the present case, but in the parent binaphthol structures, the OH groups are cis, in

[^0]: \dagger Deceased January 10. 1997.

[^1]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: BS1044). Services for accessing these data are described at the back of the journal.

